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Abstract 

Conditional Sequential Simulation Processes takes 
relatively long computational time in 3D modeling 
problems depending on many relevant factors like: type 
of the conditional method used, model of the Variogram 
function, size of the spatial framework (grid) and 
obviously number of the repeated simulations. On the 
other hand, the uncertainty of the simulation depends on 
many factors; like simulation method, Variogram model, 
the nature of data, its distribution, the spatial grid 
framework etc. The present paper study both subjects, (1) 
the uncertainty analysis and assessment and (2) 
computational cost analysis and performance. 
Through this study, two methods well known in 
geostatistics were used, namely Conditional Sequential 
Gaussian Simulation (SGSim) and Conditional 
Sequential Indicator Simulation (SISim). In addition, two 
Variogram models were applied, the Spherical 
Variogram and the Gaussian Variogram. The theoretical 
background for each methods has been explained briefly 
as well as their algorithmic steps have been specified. On 
the other hand variogram models were not discussed and 
one can find much information on this in the relevant 
literature. 
For the purpose of this research, many tests were applied 
using real geo-referenced data freely available on the 
web. In more than 200 tests that performed, some factors 
were fixed as they have no much effect on the final 
accuracy and speed, and three factors only were 
changed, namely; the size and structure of the 3D grid, 
the Variogram function and number of simulations each 
time. 
Those tests showed that the uncertainty of results is 
improved when increasing the size of the grid and number 
of simulations, but this demands more computational 
time. Still, we need an answer the most relevant 
questions: What is the appropriate size of grid? How 
many simulations required? Which Variogram model 
should we use?, in order to obtain the best accurate 
results with a minimum computational cost?.  
After many tests and the detailed statistical analysis of 
the results, the study extracted significant information for 
optimization the Conditional Sequential Simulation in 3D 
modeling and has given clear, precise answers to the 
questions proposed in this research. 

Keywords: Conditional Sequential Simulation, 3D 
Modeling by Simulation, Uncertainty Assessment, 
Simulation Performance and Computational Cost.  

 للمحاᝏاة والᝣلفة الحسابᘭةتقيᘭم الدقة 
الشرطᘭة المتتالᘭة في النمذجة ثلاثᘭة 

  الأᗷعاد
  د. محمد صالح العᘘدالله 

  جامعة دمشق –᛿لᘭة الهندسة المدنᘭة 

 قسم الهندسة الطبوغرافᘭة

  الملخص

ᘻستغرق عملᘭات المحاᝏاة الشرطᘭة المتتالᘭة في النمذجة ثلاثᘭة 
 للمسائل ال᜻بيرة الحجم الأᗷعاد 

᠍
 حسابᘭا

᠍
 وقتا

᠍
 ᙏسᘭᙫا

ً
ᗫتغير و  طᗫᖔلا

 لعوامل 
᠍
ة نᖔع الطᗫᖁقة الشرطᘭ مثلعدᘌدة أساسᘭة ᒯذا الوقت تᘘعا

 حجم الإطار  )،المستخدمة، نموذج تابع التغيرᗫة (الفارᗫوغرام
 المحاᝏاة. من جهة أخرى دقة نتائجالمᜓاني وᗖالطبع عدد تكرارات 

 لعدد كبير من العوامل منها الطᗫᖁقة ᗷدورᒯا المحاᝏاة 
᠍
تتغير تᘘعا

ᗫة (الفارᗫاة، نموذج التغيرᝏو المستخدمة في المحاᘭعة غرام)، طب
لمصفوفي ..الخ. تركز ᒯذه البᘭانات وتوزعها، الإطار المᜓاني ا

) تحلᘭل وتقيᘭم 1(وᒯما موضوعين ة ᒯذين الدراسعلى  المقالة
  الأداء. و  الحساب زمنتحلᘭل ) 2( علىكذلك و  الأخطاء

 في 
᠍
في إطار ᒯذه الدراسة تم استخدام الطᗫᖁقتين الأᜧثر استخداما

وᒯما المحاᝏاة الشرطᘭة المتتاᗷعة ᗷموجب توزᗫــــع الجيوستاᘻسᘭᙬك 
المتتاᗷعة التص ᘭفᘭة  والمحاᝏاة الشرطᘭة (SGSim)غاوص 
(SISim)،   ةᗫكذلك تم استخدام نموذجين فقط لتابع التغير

ح شروᒯما التابع ال᜻روي والتابع الغاوصي. تم فارᗫوغرام) ال(
نهما، م الخوارزمᘭات لᝣلᝣلا الطᗫᖁقتين مع وضع النظري ل الأساس

ل᜻نه لم يتم التطرق إلى شرح نماذج التغيرᗫة المستخدمة فهي 
  غلب المراجع ذات الصلة. مشروحة في أ

 ᗷاستخداماختᘘارات عدᘌدة  تم إجراءالدراسة إنجاز ᒯذه ᗷقصد 
ى متوفرة عل ᒯذه البᘭاناتو ᗷمرجعᘭة جغرافᘭة  مᜓانᘭةبᘭانات 

  عنكبوتᘭةالشᘘكة ال
᠍
في ᛿ل الإختᘘارت التي عددᒯا تجاوز . مجانا

 تم ت᙭بᘭت ᗷعض العوامل التي لᛳس لها تأثير كبير على إختᘘار  200
 3d مصفوفةالالدقة أو سرعة الحساب في حين تم تغيير حجم 

ي ᛿ل ف المحاᝏاة وعدد سᚏنارᗫوᒯاتتابع التغيرᗫة  المᜓاني،لإطار ل
  . مرة

أثᙫتت التجارب ᗷأن دقة النتائج تتحسن عند زᗫادة حجم الإطار 
 ᛿لهمرات المحاᝏاة ول᜻ن ᒯذا  زᗫادة عدد  وكذلك عند المصفوفي 

إلى إجاᗷة على  وᒯنا نحتاج .الحساب ᘌكون على حساب زمن
᛿م عدد مرات   ؟: ما ᒯو حجم الإطار المصفوفيالأسئلة التالᘭة

كي نحصل في النهاᘌة على نموذج الفارᗫوغرام؟  ماᒯو و  ؟المحاᝏاة
ᗖصورة نختصر فيها من زمن الحساب إلى الحد أفضل دقة و

   الأدنى؟

والتحلᘭل التفصᘭلي الإحصائي للنتائج ᗷعد التجارب العدᘌدة 
 مفᘭدة للحل الأمثلᒯامة و لومات معᒯذه الدراسة استخلصت 

 أعطتو  الأᗷعاد للمحاᝏاة الشرطᘭة المتتالᘭة في النمذجة ثلاثᘭة 
  .في الᘘحث المطروحة الأسئلة ودقᘭقة على إجاᗷات واضحة

النمذجة ثلاثᘭة المحاᝏاة الشرطᘭة المتتالᘭة،  :الᝣلمات المفتاحᘭة
 الᝣلفة الحسابᘭةداء و الأ الأᗷعاد ᗷاستخدام المحاᝏاة، تقيᘭم الدقة، 

.للمحاᝏاة  
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Introduction 

The new techniques in global positioning systems 
(GPS), as well as the recent developments in 
geographic information systems (GIS) and remote 
sensing, have been permitted the possibility of 
collecting a large amount of scientific, geo-
referenced data. This developments created an 
increasing interest in geostatistical spatial data 
analysis and modeling [Chiles J., Delfiner P. (1999)  
Møller (2003), Banerjee et al. (2004) and 
Schabenberger & Gotway (2004)]. As it well 
known, Statistics forms the foundation  of many 
scientific fields and applications, Geostatistics on 
the other hand, forms the basis of those scientific 
fields that is interested in the analysis and 
interpretation of geo-referenced data [Cressie 
(1993), Goovaerts, P. (1997), Bolstad W.M. Curran 
J.M (2007)]. In combination and cooperation with 
GIS techniques and data, Geostatistics became a 
respected scientific tool used in many applications:  
e.g. in remote sensing, one can detect spatial 
changes in land use and land cover, perform 
radiometric enhancements in the images or selecting 
the best image resolution for spatial data [Atkinson 
and Quattrochi, et al (2000)]. In GIS the generation, 
simulation or improvement of DEM’s can be 
optimized  using geostatistical methods [Brus and 
Heuvelink, (2007)]. One can find many other 
applications  using those methods in water resources 
assessments and managements, in environmental 
sciences, forestry, agriculture, soil sciences, 
ecology, geology, metrology etc. [Christakos, G. 
(2005) , Hengl T. (2007), Lantuejoul C. (2002) , 
Mund Jan-Peter (2013)]. Geostatistical analysis is 
concerned with studying phenomena that have 
spatial or spatiotemporal extent and its variability 
using a collection of deterministic and stochastic 
tools in order to model the phenomenon by 
simulation with the Monte Carlo Method [Al-
Abdalla M. (1998)]. The essence of 3D modeling 
continuity by simulation lies in the assumed 
relations between information and unknowns and 
between the various elements and characteristics of 
the available data [Al-Abdalla M. (1998)]. 

In geostatistics, conditional simulation is used to 
estimate, by Monte Carlo Methods, complicated 
nonlinear functions that depend explicitly on 
multivariate stochastic distributions. When the 
simulation domain is discrete, a sequential 
procedure can be considered (Journel 1989). This 
consists of prescribing an arbitrary ordering of all of 

the points of the domain, and simulating each point 
in turn according to a Conditional Gaussian 
distribution given the generated values of all the 
previous points. On the other hand, The method of 
Sequential Indicator Simulation (SIS) is type of 
conditional simulation that uses the indicator 
random function models, being binary. This method 
is ideally suited for simulating categorical variables 
controlled by two-point statistics. 

Research Objectives  

In earth sciences engineers face the problem of 
modeling spatial structures from limited data, 
especially in 3D. The data is few, sparse, and 
typically contains varying degrees of noise. Most 
often questions are raised such as:  

(1) What is happening (or existing) in certain 
unsampled locations?, (2) how much we are 
confident with the results after a simulation process 
takes place?, (3) assuming the Variogram models 
are known, does the uncertainty associated with 
those results  meet our requirements?, (4) Do we 
have enough computational power to run as many 
simulations as we need to?  

The main objectives of this study is to present the 
results of a comparative study designed to evaluate 
uncertainty and  performance of two different 
geostatistical simulation methods, namely the 
Conditional Sequential Gaussian Simulation (SGS) 
and the Conditional Sequential Indicator Simulation 
(SIS). The two methods will be presented in later 
sections of this paper. With adequate computing 
power, simulation by the Monte Carlo Method is 
possibly the best way to study the uncertainty 
associated with 3D modeling using probabilistic 
multivariate transfer functions. The frequency 
distribution (histogram)  reflects the uncertainty that 
can be obtained from a certain number of 
simulations yielding different equiprobable 
representations given the spatial structure (or 
variability) of the data. This structure is known as 
the Variogram Model.  

Conditional Simulation Concept 

The Conditional Simulation generates a Random 
Fields (RF) that simulate the spatial variability of 
the underlying random process ܼ(ݔ). Usually 
Kriging interpolation (or prediction) provides a 
minimum-variance unbiased estimator, while 
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kriging variance provides a measure of the local 
estimation uncertainty. The main advantage of 
stochastic estimation using kriging techniques is 
that the uncertainty (error variance) is estimated 
together with the prediction value. Unfortunately, 
unless a parametric distribution of the spatial error 
is assumed, the kriging approach cannot provide 
confidence intervals associated with the predicted 
values. With conditional simulation, the uncertainty 
estimation or the confidence intervals are 
guaranteed after performing a certain number of 
simulations. Generation of more realizations would 
lead to much precise estimation of the uncertainty. 
Journel and Huijbregts (1978) showed that the 
posterior estimation variance of Conditional 
Simulation is as twice as that of Kriging, thus one 
should emphasize that the objective of conditional 
simulation is not to obtain the best unbiased 
estimator that produced by a Kriging predictions. 
Conditional Simulation is useful to obtain 
information about the amount of variability 
remaining in the physical process ܼ(ݔ) conditioning 
with respect to the observations (Journel 1989), thus 
Kriging Predictions and Conditional Simulation 
address two different problems.  

The only three elements, the mean function ߤ(∙), the 
covariance function C(∙) and the data vector ݖௗ 
forms the basic elements of a conditional 
simulation. The conditionally simulated nodes 
ܼ௦௖(ݔ) must pass through the data ݖௗ, having 
unconditional mean  ߤ(∙) and variance C(∙). Kriging 
predicator ܼ௔௞(ݔ) would satisfy the requirements, 
because it does interpolate the data exactly and it is 
unbiased. However Kriging has a smoothing 
tendency, thus it does not possess enough variability 
in order to give a posterior probability distribution 
about the uncertainty. With Conditional Simulation 
we are able to generate an infinite number of 
possible realizations of a Random Field 
{ ܼ௦(ݔ), ,ܦ ߳ ݔ ݏ = 1 → ∞ }. From among the 
infinite simulations we choose those that meet 
certain condition  

 ܼ௦(ݔ௔) =  ܼ଴(ݔ௔), ௔ݔ∀ ∈  .ܦ

For example if we want the simulated model honors 
data values at the actual data locations, we set: 

 ܼ௖௦(ݔ௔) =  ܼ଴(ݔ௔), ௔ݔ∀ ∈  ,ܦ

Where ݔ௔ represents data locations. 

This is known as Conditional Simulation, which has 
the same variability characteristics as the real 

observed phenomenon. This means that the 
simulated values  ܼ௖௦(ݔ௔) have the same first two 
experimentally found moments (the mean and the 
variance) representing the histogram of the real 
values ܼ଴(ݔ௔). Now consider the decomposition of 
the process into a kriging predicator and an 
unconditional residual (Journel and Huijbregts 
1978). 

ܼ௖௦(ݔ) = (ݔ)∗ܼ + ሾܼ௨௦(ݔ) − ܼ௨௦
∗  ሿ    (1)(ݔ)

Where ܼ௖௦(ݔ) is the conditional simulation, ܼ∗(ݔ) 
is the kriging estimators using the real data set 
(representing the estimated grid), ܼ௨௦(ݔ) is the 
unconditional simulation, and ܼ௦௞(ݔ)  is simple-
kriging estimators using the unconditional 
simulated data. The two components of the right-
hand side ܼ∗(ݔ) and ܼ௨௦(ݔ) − ܼ௨௦

∗  are  (ݔ)
orthogonal. This orthogonality implies that ܼ௖௦(ݔ) 
has the same unconditional covariance as (ݔ) , that 
is ܥ(∙). The quantity ܼ௨௦(ݔ) − ܼ௨௦

∗  can be (ݔ)
obtained by kriging the difference between data 
values and the unconditionally simulated ones at 
data locations. Thus the above expression can 
rewritten as follows [Cressie (1993)] 

ܼ௖௦(ݔ) = ܼ௨௦(ݔ) + ′(ݔ)ܥ ∙ ∑ ௗݖ) − ௨௦)ିଵݖ    (2) 

Where ܼ௖௦(ݔ) and ܼ௨௦(ݔ) are the conditional and 
unconditional simulations respectively, 

ᇱ(ݔ)ܥ  ≡ ௗݔ൫ܥ , ,௚൯ݔ ௗݔ∀ ∈ ,ܦ ௚ݔ∀ ∈   is the :  ܩ

Covariance vector between data nodes D and the 
simulated grid nodes G, 

∑ ௗݖ) − ௨௦)ିଵݖ  
 
is the Variance-Covariance Matrix 

between the data values and the simulated ones,  

ௗݖ  ௚ are two vectors representing actual dataݖ ݀݊ܽ 
and the simulated ones at the data node locations 
respectively. 

Sequential Gaussian Simulation (SGS) 

Simple or Ordinary kriging is used to obtain 
estimates of the necessary conditional distribution 
defined by the only the two Gaussian parameters; 
namely its mean and variance. The simulations are 
then drawn randomly from this distribution using 
inverse transform method. Finally, the results of the 
Gaussian simulation are transformed back into the 
original data space. In general, the principle of 
Conditional Sequential Simulation, is once the new 
value simulated, it is added to the original set of 



© Uncertainty Assessment and Computational Cost of Conditional Sequential Simulation in 3D Modeling 

 

4       
 
 

conditioning data, and the procedure repeated. 
Finally all simulated nodes will have the same initial 
spatial structure provided that all node values at data 
locations preserved. The principle of Conditional 
Sequential Simulations can be described as follows: 

Consider ݂(ݖଵ, ,ଶݖ . . ,  ଴ݖ  ଴) is the cpdf, whereݖ | ௡ݖ
denotes the conditioning data at ݊଴ locations.   

This probability function can be defined as 

,ଵݖ)݂ ,ଶݖ . . , (଴ݖ | ௡ݖ = (଴ݖ |ଵݖ)݂ ∙ ∪ ଵݖ|ଶݖ)݂ (଴ݖ … ∙
,ଵݖ|௡ݖ)݂ ,ଶݖ . . , ∪ ௡ିଵݖ   ଴)   (3)ݖ

Thus the generation of a realization by Sequential 
Simulation takes the following steps:  

Algorithm (1):  

1. Draw a value ݖଵ from the conditional 
probability distribution ଵ݂ given the set ݖ଴ as 
conditioning data, 

2. Draw a value ݖଶ from the conditional 
probability distribution ଶ݂ given ݖ଴ ∪  ଵ asݖ
conditioning data, 

3. Draw the next a value ݖ௜ from the conditional 
probability distribution ௜݂ in the same way and 
repeat the process.  

4. Draw the last value ݖ௡ from the conditional 
probability distribution ௡݂ given the set   
,ଵݖ|௡ݖ) ,ଶݖ . . , ∪ ௡ିଵݖ  .଴) as conditioning dataݖ

 
Remark 1: in case unconditional simulation is 
needed one should reduce the set of conditioning 
data to the null set; all simulations would be 
replaced by drawing from the marginal distribution 

ଵ݂. 

Remark 2: There is no restriction on the spatial 
locations of the random variables yielding an 
algorithm that can be equally applied to generate 
one or more variables on either a regular or irregular 
grid.  

However, it remains the problem of determining the 
Cumulative Probability Distribution Function 
(cpdf) of any single random variable given any set 
of conditioning data. This problem has been solved 
for the Gaussian distribution, where the data first are 
transformed to the standard Gaussian values.  

If the continuous phenomenon {ܼ(ݔ), ݔ ∈  is {  ܦ
generated by the sum of a number of independent 
sources {ݕ௞(ݔ), ݔ ∈ ,ܦ ݇ = 1, . . ,  with similar {ܭ
spatial distributions then the phenomenon can be 

modeled by a Multi-Gaussian Random Fields 
Model. Multi-Gaussian models are extremely 
congenial (good-natured), well understood, and they 
have large record of successful applications. A 
random function is said to be Gaussian or Multi-
Gaussian if any linear combination of its variables 
follows the Gaussian distribution, 

(ݔ)ܼ = ෍ ௞ߣ ௞ܻ(ݔ) ≡ (4)     ݊ܽ݅ݏݏݑܽܩ
௄

௞ୀଵ
 

The Gaussian Function is unique for its analytical 
simplicity and for being the extreme distribution of 
many analytical theorems globally known as 
‘Central Limit Theorem’. 

Sequential Gaussian Simulation Algorithm  

The general procedure for generating a simulation 
of a multivariate Gaussian field is provided by the 
sequential principle described in Algorithm (1). 
Each variable is simulated sequentially according to 
its Gaussian Cumulative Distribution Function cdf. 
The conditioning data consists of all original data 
and all previously simulated values found within a 
predefined neighborhood. The SGS algorithm 
proceeds as follows (Deutsch and Journel 1992, 
Deutcsh 2002): 

Algorithm (2):  

1. Determine the cpdf of the random variable that 
represents the entire study area (the distribution 
of z-data).  
 

2. Perform the normal score transform of z-data 
into y-data with the standard normal cpdf, i.e. 
the conditioning data should be transformed 
into Standard Gaussian.  

 

3. Given the model of the Semivariogram, 
compute the covariance table of the transformed 
conditioning data. 

 

4. Define a random path through all grid nodes. 
The path visits each node only once. At each 
grid node retain a specific number of 
neighboring data including both original y-data 
and previously simulated ones.  

 

5. At each grid node to be simulated  
 

a. determine the conditioning data within the 
search distance, 

b. use kriging, with the normal score variogram 
model, to determine the Gaussian parameters 
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(mean and variance) of the cpdf of the random 
variable at that node, 

c. draw a simulated value from that cpdf. 
d. add this node to the original data set, 
e. Go back to step (5.a) and repeat the process 

until all grid nodes have been visited. 
 

6. Back transform the simulated normal values 
into simulated values for the original variable. 

(ݔ)ݖ = ,൯(ݔ)ݕଵ൫ିܩ ݔ ∈  (5)             ܦ

Remark 1:  

the first condition for Sequential Gaussian 
Simulation SGS is that the conditioning data are 
multivariate Standard Gaussian with zero-mean and 
unit variance. Most earth science data do not present 
symmetric Gaussian histogram. In this case a non-
linear transformation should be applied in order to 
obtain a standard Normal y-data.  

Sequential Indicator Simulation (SIS) 

Given a set of spatially distributed data and grid 
node system, SIS is a procedure for estimating a new 
value at any non-sampled location (grid node) by 
Indicator kriging. The SIS procedure is achieved 
through sequential estimation of the Cumulative 
Probability Distribution Function (cpdf) at each grid 
node. The cpdf provides the probability that at a 
particular location the variable of interest does not 
exceed a certain threshold. This probability is 
conditioned to the initial data values and to all 
previously simulated ones. After the cpdf has been 
estimated, the simulation of the corresponding value 
is achieved by Monte Carlo, where a random 
number is drawn from the uniform distribution 
ܷ(0,1) then the simulated value is computed from 
the inverse of the cpdf by using the inverse 
transform method.   

The theory behind the SIS technique is as follows:  

Suppose {ܼ(ݔ), ݔ ∈  is the random process {ܦ
defines the conditioning data. Define the indicator 
random variable at location x for the threshold ݖ଴ by 
using the binary transformation (Journel 1989),   

,ݔ)ܫ (଴ݖ = ቄ1  ݂݅   ܼ(ݔ ≤ (଴ݖ
݁ݏ݅ݓݎℎ݁ݐ݋      0

       (6)  

where the conditional expected value of the 
indicator random variable ݔ)ܫ,   ଴) is defined asݖ

,ݔ)ܫ}ܧ {(ݔ)ܼ|(଴ݖ = Pr {ܼ(ݔ) ≤   ଴} (7)ݖ

Consider A threshold ݖ଴ is defined by ݖ଴ =
ଵ(1ିܩ  −  where p is the mean of the indicator , (݌
value, and G(z) is the cumulative Gaussian 
distribution function. SIS is achieved by simulating 
values of a standard Gaussian variable and applying 
the threshold ݖ଴ to the result. Therefore one can 
estimate the value of the conditional probability 
defined above by be estimating the corresponding 
indicator conditional expectation using Indicator 
Kriging from the indicator inverse transform of the 
conditioning data. The SIS algorithm estimates cpdf 
for all classes at the class limits ݖ଴, by using Simple 
or Ordinary Kriging.  

Sequential Indicator Simulation Algorithm  

Before performing the Sequential Indicator 
Simulation, the range of each category is established 
along with its variability model (or the indicator 
covariance function ܥଵ(ℎ;  ଴), that is needed forݖ
each thresholds ݖ଴. Given an initial data set z and K 
indicator covariance functions, the SIS algorithm 
proceeds as follows (Hernandez & Srivastava 1990, 
Deutsch C.V.  2006):  

Algorithm (3) 

1. Transform the initial conditioning data into 
indicator data sets, so that the range of values 
taken by the attribute z is classified into K 
categories each associated with a certain 
threshold ݖ௞. Code each conditioning value into 
a vector of K indicator values.  
 

2. Transform the K indicator covariance models 
into the same number of kriging covariance 
matrices. Establishing the kriging systems in 
advance would speed up data search.  
 

3. Define a random path through all grid nodes, so 
that each node is visited only once.  
 

4. Now for each grid node to be simulated along 
the random path:  

a) Determine the conditioning data within the 
search distance. 

b) Retain the closest data points up to a specified 
maximum number per octant. 

c) Again for each threshold ݖ௞, ݇ = 1, . . ,  Set  .ܭ
up the kriging system using the indicator 
covariance model and solve the system.  



© Uncertainty Assessment and Computational Cost of Conditional Sequential Simulation in 3D Modeling 

 

6       
 
 

d) Compute the cpdf estimate for the threshold 
as a linear combination of the indicator 
conditioning data,   
 

(ݔ)ܼ    = ∑ ௞ݖ ∙ (ݔ)ܼ}ݎܲ   ,(ݔ)௞ܫ ≤  ௞)    (8)ݖ
 

e) Draw a random number from the uniform 
distribution (0,1) , and simulate a value z by 
reading from cpdf, applying the inverse 
transform (Monte Carlo Method).  

f) Transform the simulated values into a series 
of K indicator values according to the same K 
thresholds.  

g) Add the simulated node obtained in the 
previous steps to the set of conditioning 
values. 

h) Go back to step (4). Repeat until all grid nodes 
have been visited.  

Remark 1: The implementation of the SIS is more 
demanding than other simulation methods. In 
addition more information is needed to establish the 
spatial variability structure that has to be reproduced 
by the simulation.  

Remark 2: The simulated nodes with SIS algorithm 
is not continuous but pre-classified into a number of 
categories, or in other words the range of variability 
is split into number of classes, each simulated 
separately by SIS.  

Remark 3: One can use as many classes as needed 
in order to obtain the required resolution, if only 
information about the variogram model is available. 
The classes need not to of equal amplitude, thus one 
can focus on that part of the range of variability most 
significant to the simulation. We can also use one 
model for all categories, which speed the execution 
time of the algorithm considerably, because in this 
case only one Kriging system has to be solved.  

The advantages of Sequential Indicator Simulation 
(SIS) algorithm are:  

1. Conditioning is done as integral part of the 
simulation.  

2. No assumption about the probability 
distribution (cpdf) is required.  

3. It is not restricted to spatial forms of the 
covariance or variogram functions.  

4. Qualitative or quantitative information can be 
included in the simulation. 
 
 
 
 

Examples of Conditional Sequential 
Simulation using synthetic data 

Some examples are presented here in order to show 
how the output would appear when applying the 
conditional SGS or SIS simulation methods on 
synthetic 3D data. figure(1) presents SGS method,  
and  figure(2) presents SIS method, using Spherical 
and Gaussian Variograms respectively. 

 
Figure(1) Conditional SGS Simulation,  with Spherical 

Variogram (left) and Gaussian Variogram (right) 

 
Figure(2) Conditional SIS Simulation, with Spherical 

Variogram (left) and Gaussian Variogram (right) 
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Implementation the Conditional 
Sequential Simulations With 3D data 

Both conditional SGS and SIS simulations has been 

implemented using real 3D data related to the Historical 

Lake Water, Groundwater Levels, and Spring Flows in 

Central Florida. Maps and data used in the study belong 

the Lake Area in Central Florida, where data collected 

mainly by the U.S. Geological Survey over the last 80  

years [see Scientific Investigations Report 2014–5032,  

O’Reilly A.M.,   and others (2014)  for details]. The Study 

area is located within:  

[−82°07ᇱ, −80°90ᇱሿݐݏܽܧ , ሾ27°65ᇱ, 29°00ᇱሿ ܰݐݎ݋ℎ. 

The data consists of measured data collected by the east-

central Florida transient (ECFT) model [see Scientific 

Investigations Report 2012–5161, Sepúlveda N, et al. 

2012], and by the Central Florida Artificial Neural 

Network Decision Support System (CFANN DSS). All 

data is available for download from the USGS site 

(http://dx.doi.org/ 10.3133/sir20145032).  

Figure (3) presents the base map of the Lakes Area by 

USGS digital data using UTM projection-Zone 17. 
Groundwater observation locations and boundary 

districts are shown on the map. Water-level were 

available for 438 wells in the study area at different 

depths from 15m to 485m (1450feet). Figure(4) shows a 

3D scatter plot of the data points. 

Figure (3) the base map of the Lakes Area 
 

 
Figure (4) 3D scatter plot of the data points 

Only two Variogram models were used; the Spherical 

Figures (5) and the Gaussian Figure (6). Distances here 

are represented by Geographic Units (for example 

0.15degൎ16.5 km). Variogram Ranges that were fixed in 

all subsequent tests are: max=0.25, medium=0.20, 

min=0.15. the data Values were standardized to  fit the 

Gaussian Distribution (1, 0.5), and the sill (maximum 

Semivariogram value):  

max (ߛ௫(ℎ)) = max (
1

2ܰ(ℎ)
෍ (݅ݔ)ܼ) − (2((݆ݔ)ܼ ൎ 1.0
ܰ(ℎ)

݇=1

 

 

 
Figure (5)  Fitting Spherical Variogram Model 

 

 
Figure (6) Fitting Gaussian Variogram Model 
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Implementation of the Conditional Sequential 
Gaussian Simulation (SGS):  

 Simulations have been completed using the following 
Parameters: 

 Variogram Model Types: the Spherical (Left set 
of figures below), then Variogram Model Type 
: Gaussian (Right set of figures below) 

 Variogram Ranges : max: 0.25,  medium: 0.20,  
min: 0.15 

 Simulation Seed Value = 1804910 
 Maximum Conditioning Data =     25 
 Number of all Simulations = 36  
 Number of Data Points = 438  
 Final Grid Arrangement: 

                         X          Y          Z 
 Grid Cells:         60          60           50  
Cell Size    :       0.013   0.013     0.028  
Start Coord:     -81.80   29.00    0.05 (-485m)  
Finish Coord:   -81.20   28.20    1.45 (-15m)  
Coord. Units:     deg.      deg.      ×1000feet 

 
The output of this implementation is shown in the figure 
(7). Notice the differences between the left set where 
Spherical Model was used and the set on the right where 
the Gaussian Model was used. The second representation 
exhibits smoother patches.  

 
 

 
Figure (7)   Figures of  Sequential Gaussian 

Simulation (SGS) with Spherical Variogram (left) and 
Gaussian Variogram (right) 

 

Implementation of the Conditional Sequential 
Indicator Simulation (SIS):  

This type of simulation has been completed using the 
following Parameters: 

 Variogram Model Types: the Spherical (Left set 
of figures below ), then Variogram Model Type 
: Gaussian (Right set of figures below) 

 Variogram Ranges : max: 0.25,  medium: 0.20,  
min: 0.15 

 Simulation Seed Value = 52470184 
 Number of Indicators =  3 
 Marginal Probabilities values: 0.65, 0.25, 0.10 
 Maximum Conditioning Data =     25 
 Number of all Simulations = 36  
 Number of Data Points = 438  
 Final Grid Arrangement: 

                         X          Y          Z 
 Grid Cells:         60          60           50  
Cell Size    :       0.013     0.013     0.028  
Start Coord:     -81.80   29.00    0.05 (-485m)  
Finish Coord:   -81.20   28.20    1.45 (-15m)  
Coord. Units:     deg.      deg.      ×1000feet 

 
The output of this implementation is shown in the figure 
(8). Here the patches for both variograms are the same. 
 

 
Figure (8)  Figures of  Sequential Indicator 

Simulation (SIS) with Spherical Variogram (left) and 
Gaussian Variogram (right) 
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Uncertainty Assessment with SIS 
 

 
The figures below show the results of simulation tests that 
performed using Conditional Sequential Indicator 
Simulation (SIS) method with the two models (the 
Gaussian and the Spherical), changing grid structure 
(from 10000 total voxels till 100000 total voxels), and for 
each structure changing number of simulations (NS= 10, 
20, 36, 48, 64 and 100 simulation). All test used the 
marginal probabilities values: 0.65, 0.25, 0.10, assuming 
that 25% belong to the groundwater data 10% to lakes 
data and 65% stands for unavailable data. After all 
simulations for each round are ready, the  output of the 
Mean value, Standard Deviation and Variance could be 
computed and presented as shown in the figures 
(11,12,13). Then uncertainty for each of the three 
statistical measures was computed and registered. Those 
tests show that Mean Uncertainty decreases in the same 
way by increasing number of voxels or by increasing total 
simulations. After ~64 simulations, one can obtain better 
results only by increasing number of voxels as we 

 

  
Figure(9) Mean Uncertainty vs. number of simulations and 
seven Grid Structure (or Voxels) – SIS Method – Gaussian 

model 
 

 
Figure(10) Variance Uncertainty vs. number of simulations 

and seven Grid Structure (or Voxels) SIS Method – Gaussian 
model 

 
 

see in the figure(9). On the other hand Standard deviation 
uncertainty or Variance Uncertainty (Variance=ߪଶ; ߪ 
Standard deviation)  do not show stability after 64 
simulations and their values continue decreasing beyond 
that, as we see in the figure (10). 

 

 

 
Figure(11) only two SIS tests presented for NS=20 

 

 

 
Figure(12) only two SIS tests presented for NS=48 

 

 

Figure(13) two SIS tests presented for NS=48 and 100 
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Uncertainty Assessment with SGS 
 
Similar tests to SIS were performed using Conditional 
Sequential Gaussian Simulation (SGS) method with the 
two models (the Gaussian and the Spherical), changing 
grid structure in same way (from 10000 total voxels till 
100000 total voxels. The figures below show the results 
of simulation tests, where for each structure changing 
number of simulations (NS=12, 24, 36, 48, 64 and 100 
simulation). Variogram Ranges: max=0.25, 
medium=0.20, min=0.15 were fixes for all.  Again, after 
all simulations for each round are ready, the  output of the 
Mean value, Standard Deviation and Variance could be 
computed and presented as shown in the figures 
(16,17,18) . Then uncertainty for each of the three 
statistical measures was computed and registered. Those 
tests show that Mean Uncertainty decreases in the same 
way by increasing number of voxels or by increasing total 
simulations. For SGS method, the mean value of 
uncertainty decreases slowly by increasing number of 
simulations NS, or by increasing number of voxels as we 
 
 

 
Figure (14) Mean Uncertainty vs. number of simulations and 

seven Grid Structure (Voxels) SGS Method – Spherical model 
 

 
Figure (15) Variance Uncertainty vs. number of simulations 
and seven Grid Structure (Voxels)  SGS Method  – Spherical 

model 

 

see in the figure (14). Standard deviation uncertainty or 

Variance Uncertainty (Variance=ߪଶ; ߪ Standard 
deviation)  measures do not show any stability after 100 
simulations and their values continue decreasing beyond 
that, [figure (15)]. 

 
Figure(16) only two SGS tests presented for NS=24 

 
Figure (17) only two SGS tests presented for NS=48 

 
Figure (18) only two SGS tests presented for NS=100 
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Computational Cost Assessment  

Simulation tests have been performed for both SIS 
Method and SGS Method and using the Spherical and 
Gaussian Variogram models changing grid structure (17 
in total starting from 10,000 voxels till 1000,000 total 
voxels). Again for each structure changing number of 
simulations (NS) (for SIS six in total, NS= 6, 20, 36, 48, 
64 and 100 , and for SGS six also, NS=12, 24, 36, 48, 64 
and 100). This means that for each SIS or SGS Method 
about 100 test have been executed and for each test the 
time of execution was measured precisely (with accuracy 
±1.0 millisecond). All tests were performed in the way 
with the same parameters explained in the previous 
sections. The time that has been measured belongs only 
to the CPU time for simulations and writing results to 
disk. There is an extra time is needed for presenting 
outputs or other  arrangements was not included because 
this is not depend on number of voxels, the NS number 
or the method used. The characteristics of the CPU 
processor that has been used is Intel i7 2.20 GB runs by 
Windows 10 (64bit) operating system.  Table (1) and 
table (2) show the results of the execution time (in 
seconds) for both SIS and SGS Methods respectively. 
Those results demonstrated graphically in figure (19) for 
SIS and in figure (20) for SGS simulations.  

 

 
Table (1) SIS Method execution time in seconds 

 

 
Table (2) SGS Method execution time in seconds 

The x and y axis of the charts are Log-Log which show 
more details for smaller grid structures (voxels number). 
As we see from the figures that the relationship is linear 
in both cases (SIS and SGS). Those figures also useful for 
making predictions by interpolation or extrapolation 
(unless the PC has same or similar parameters).  

 

 
Figure (19) the linear relationship between simulation time 
(seconds) and Total Number of Voxels (SIS Method) 

 
Figure (20) the linear relationship between simulation time 
(seconds) and Total Number of Voxels ( SGS Method) 

The last results do not show clearly which method is 
faster SIS or SGS because there are many disturbing 
values when comparing the two tables above. Also we 
still do not know whether the relationship is also linear or 
in other words, whether the total number of voxels 
processed in one second using SIS Method or using SGS 
Method will be the same, if all other parameters are the 
same !. One more question; do the Spherical Variogram 
model behave in the same way as with the Gaussian in 
term of computational cost? 
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For this purpose, another synthetic measure was created 
which calculates the speed of simulation by the following 
formula 

݀݁݁݌ܵ =
ܰܵ ∙ ܸܶ

ܶ
 

Where Speed  refers to the total simulated voxel  that is 
generated in one second, 
NS refers to number of simulations, TV refers to Total 
Voxels and T refers to the time in seconds. 

The values in the following tables show (“Speed” 
Computations) the total number of voxels processed in a 
second using SIS Method fixed in table (3) and using 
SGS Method in table (4). The tables values have been 
illustrated in the figures (21) and (22) respectively.  

 

Table (3) Total Number of Voxels processed in a second  
using SIS Method (Sph: Spherical model, Gau: Gaussian) 

 

Table (4) Total Number of Voxels processed in a second  
using SGS Method (Sph: Spherical model, Gau: Gaussian) 

The answers to all above suggested questions can be 
deduced from the figures (21) and (22).  

 In general, SIS Method is much faster than SGS 
Method 10-15%, as we see with the Spherical 
variogram and NS=100, SIS speed is about 93000  

 
Figure (21) the relationship between simulation “Speed” 

(Total Voxel/second) and number of voxels for one 
simulation Using SIS Method. 

 
Figure (22) the relationship between simulation “Speed” 

(Total Voxels/second) and number of voxels for one 
Simulation using SGS Method. 

voxels/sec. while it is near 85000 voxels/sec. for 
SGS. When using Gaussian variogram and NS=36, 
SIS speed is about 88000 voxels/sec. while SGS 
speed is about 66000 voxels/sec. 
 

 For both methods (SIS or SGS) the speed is not 
stable all the time, as we see some distributions in the 
beginning for grid total voxels number less than 
350,000. After that limit SGS speed becomes stable. 
On the other hand SIS speed has also some stability, 
but its performance becomes a little slower for larger 
grid total voxels. 
 

 One can also notice, in general, from tables (3) and 
(4) or from corresponding figure that when using the 
Spherical Variogram the speed is nearly 20%-25% 
faster than its level using the Gaussian variogram, no 
matter whether the simulation is performed by SIS or 
SGS method.   
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Conclusions  

Statistical tests have been proved that the Mean 
Uncertainty decreases (with both SIS or SGS Conditional 
Simulations) by either increasing number of total voxels 
(3D grid) or by increasing number of simulations (NS) or 
both. For SIS method this uncertainty becomes stable 
after the limit NS=64, while for SGS method the same 
feature becomes stable after NS=100 limit. 

The tests also proved that by either increasing number of 
total voxels (3D grid) or by increasing number of 
simulations (NS) Variance Uncertainty continue 
decreasing  beyond the limit NS=100, but for SIS method 
this feature is a little slower and for SGS method the 
decreasing is much faster. 

For both SGS and SIS Conditional Simulation methods, 
there is a clear linear relationship between Computational 
Cost (simulation time) and number of Voxels of the 3D 
grid no matter which CPU processor  is used. This 
conclusion helps to predict precisely the computational 
cost for large 3d grid structure and/or very large number 
of simulations (say NS>100). Note that each of SIS or 
SGS has its own chart and its own speed, thus we should 
not unify the two charts. 

The multiple tests (more than 200) proved that SIS  
method speed is 10-15% faster than SGS Method. The 
tests also proved that speed of simulations is faster 20%-
25% using Spherical Variogram  than when using the 
Gaussian one.   

 Special Matlab programs have been used in all 
implementation, and presentations of this research, 
with support from mGstat and SGeMS libraries for 
performing simulations only. This software is free 
online [see mGstat: Hansen T.M (2011)] and 
[SGeMS;  Rémy N., Wu J., Boucher A. (2004)].   
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