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Abstract

Conditional Sequential Simulation Processes takes
relatively long computational time in 3D modeling
problems depending on many relevant factors like: type
of the conditional method used, model of the Variogram
function, size of the spatial framework (grid) and
obviously number of the repeated simulations. On the
other hand, the uncertainty of the simulation depends on
many factors, like simulation method, Variogram model,
the nature of data, its distribution, the spatial grid
framework etc. The present paper study both subjects, (1)
the wuncertainty analysis and assessment and (2)
computational cost analysis and performance.

Through this study, two methods well known in
geostatistics were used, namely Conditional Sequential
Gaussian ~ Simulation  (SGSim) and  Conditional
Sequential Indicator Simulation (SISim). In addition, two
Variogram models were applied, the Spherical
Variogram and the Gaussian Variogram. The theoretical
background for each methods has been explained briefly
as well as their algorithmic steps have been specified. On
the other hand variogram models were not discussed and
one can find much information on this in the relevant
literature.

For the purpose of this research, many tests were applied
using real geo-referenced data freely available on the
web. In more than 200 tests that performed, some factors
were fixed as they have no much effect on the final
accuracy and speed, and three factors only were
changed, namely; the size and structure of the 3D grid,
the Variogram function and number of simulations each
time.

Those tests showed that the uncertainty of results is
improved when increasing the size of the grid and number
of simulations, but this demands more computational
time. Still, we need an answer the most relevant
questions: What is the appropriate size of grid? How
many simulations required? Which Variogram model
should we use?, in order to obtain the best accurate
results with a minimum computational cost?.

After many tests and the detailed statistical analysis of
the results, the study extracted significant information for
optimization the Conditional Sequential Simulation in 3D
modeling and has given clear, precise answers to the
questions proposed in this research.

Keywords: Conditional Sequential Simulation, 3D
Modeling by Simulation, Uncertainty Assessment,
Simulation Performance and Computational Cost.
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Introduction

The new techniques in global positioning systems
(GPS), as well as the recent developments in
geographic information systems (GIS) and remote
sensing, have been permitted the possibility of
collecting a large amount of scientific, geo-
referenced data. This developments created an
increasing interest in geostatistical spatial data
analysis and modeling [Chiles J., Delfiner P. (1999)
Moiller (2003), Banerjee et al. (2004) and
Schabenberger & Gotway (2004)]. As it well
known, Statistics forms the foundation of many
scientific fields and applications, Geostatistics on
the other hand, forms the basis of those scientific
fields that is interested in the analysis and
interpretation of geo-referenced data [Cressie
(1993), Goovaerts, P. (1997), Bolstad W.M. Curran
J.M (2007)]. In combination and cooperation with
GIS techniques and data, Geostatistics became a
respected scientific tool used in many applications:
e.g. in remote sensing, one can detect spatial
changes in land use and land cover, perform
radiometric enhancements in the images or selecting
the best image resolution for spatial data [Atkinson
and Quattrochi, et al (2000)]. In GIS the generation,
simulation or improvement of DEM’s can be
optimized using geostatistical methods [Brus and
Heuvelink, (2007)]. One can find many other
applications using those methods in water resources
assessments and managements, in environmental
sciences, forestry, agriculture, soil sciences,
ecology, geology, metrology etc. [Christakos, G.
(2005) , Hengl T. (2007), Lantuejoul C. (2002) ,
Mund Jan-Peter (2013)]. Geostatistical analysis is
concerned with studying phenomena that have
spatial or spatiotemporal extent and its variability
using a collection of deterministic and stochastic
tools in order to model the phenomenon by
simulation with the Monte Carlo Method [Al-
Abdalla M. (1998)]. The essence of 3D modeling
continuity by simulation lies in the assumed
relations between information and unknowns and
between the various elements and characteristics of
the available data [Al-Abdalla M. (1998)].

In geostatistics, conditional simulation is used to
estimate, by Monte Carlo Methods, complicated
nonlinear functions that depend explicitly on
multivariate stochastic distributions. When the
simulation domain is discrete, a sequential
procedure can be considered (Journel 1989). This
consists of prescribing an arbitrary ordering of all of

the points of the domain, and simulating each point
in turn according to a Conditional Gaussian
distribution given the generated values of all the
previous points. On the other hand, The method of
Sequential Indicator Simulation (SIS) is type of
conditional simulation that uses the indicator
random function models, being binary. This method
is ideally suited for simulating categorical variables
controlled by two-point statistics.

Research Objectives

In earth sciences engineers face the problem of
modeling spatial structures from limited data,
especially in 3D. The data is few, sparse, and
typically contains varying degrees of noise. Most
often questions are raised such as:

(1) What is happening (or existing) in certain
unsampled locations?, (2) how much we are
confident with the results after a simulation process
takes place?, (3) assuming the Variogram models
are known, does the uncertainty associated with
those results meet our requirements?, (4) Do we
have enough computational power to run as many
simulations as we need to?

The main objectives of this study is to present the
results of a comparative study designed to evaluate
uncertainty and performance of two different
geostatistical simulation methods, namely the
Conditional Sequential Gaussian Simulation (SGS)
and the Conditional Sequential Indicator Simulation
(SIS). The two methods will be presented in later
sections of this paper. With adequate computing
power, simulation by the Monte Carlo Method is
possibly the best way to study the uncertainty
associated with 3D modeling using probabilistic
multivariate transfer functions. The frequency
distribution (histogram) reflects the uncertainty that
can be obtained from a certain number of
simulations  yielding different equiprobable
representations given the spatial structure (or
variability) of the data. This structure is known as
the Variogram Model.

Conditional Simulation Concept

The Conditional Simulation generates a Random
Fields (RF) that simulate the spatial variability of
the underlying random process Z(x). Usually
Kriging interpolation (or prediction) provides a
minimum-variance unbiased estimator, while
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kriging variance provides a measure of the local
estimation uncertainty. The main advantage of
stochastic estimation using kriging techniques is
that the uncertainty (error variance) is estimated
together with the prediction value. Unfortunately,
unless a parametric distribution of the spatial error
is assumed, the kriging approach cannot provide
confidence intervals associated with the predicted
values. With conditional simulation, the uncertainty
estimation or the confidence intervals are
guaranteed after performing a certain number of
simulations. Generation of more realizations would
lead to much precise estimation of the uncertainty.
Journel and Huijbregts (1978) showed that the
posterior estimation variance of Conditional
Simulation is as twice as that of Kriging, thus one
should emphasize that the objective of conditional
simulation is not to obtain the best unbiased
estimator that produced by a Kriging predictions.
Conditional ~ Simulation 1is useful to obtain
information about the amount of variability
remaining in the physical process Z (x) conditioning
with respect to the observations (Journel 1989), thus
Kriging Predictions and Conditional Simulation
address two different problems.

The only three elements, the mean function p(-), the
covariance function C(-) and the data vector z,4
forms the basic elements of a conditional
simulation. The conditionally simulated nodes
Zsc(x) must pass through the data z;, having
unconditional mean pu(-) and variance C(). Kriging
predicator Z,; (x) would satisfy the requirements,
because it does interpolate the data exactly and it is
unbiased. However Kriging has a smoothing
tendency, thus it does not possess enough variability
in order to give a posterior probability distribution
about the uncertainty. With Conditional Simulation
we are able to generate an infinite number of
possible realizations of a Random Field
{Zs(x),xeD,s=1—-> 0} From among the
infinite simulations we choose those that meet
certain condition

Zs(xq) = Zo(xq), Yxq €D.

For example if we want the simulated model honors
data values at the actual data locations, we set:

Zes(xq) = Zo(xq), Vx4 €D,
Where x, represents data locations.

This is known as Conditional Simulation, which has
the same variability characteristics as the real

observed phenomenon. This means that the
simulated values Z.;(x,) have the same first two
experimentally found moments (the mean and the
variance) representing the histogram of the real
values Zy(x,). Now consider the decomposition of
the process into a kriging predicator and an
unconditional residual (Journel and Huijbregts
1978).

Zes(x) = Z7(x) + [Zys(x) — Z3s(0)] (D)

Where Z.¢(x) is the conditional simulation, Z*(x)
is the kriging estimators using the real data set
(representing the estimated grid), Z,s(x) is the
unconditional simulation, and Zg(x) is simple-
kriging estimators using the unconditional
simulated data. The two components of the right-
hand side Z*(x) and Z,,(x) —Z;.(x) are
orthogonal. This orthogonality implies that Z.;(x)
has the same unconditional covariance as (x) , that
is C(*). The quantity Z,s(x) —Z;s(x) can be
obtained by kriging the difference between data
values and the unconditionally simulated ones at
data locations. Thus the above expression can
rewritten as follows [Cressie (1993)]

Zes(x) = Zys(x) + C(x), ’ E_l(zd — Zys) (2)

Where Z.;(x) and Z,,;(x) are the conditional and
unconditional simulations respectively,

Cx)' = C(xd,xg), Vxq € D,Vxg4 € G :is the

Covariance vector between data nodes D and the
simulated grid nodes G,

YNz — z,s) is the Variance-Covariance Matrix
between the data values and the simulated ones,

zq and z, are two vectors representing actual data
and the simulated ones at the data node locations
respectively.

Sequential Gaussian Simulation (SGS)

Simple or Ordinary kriging is used to obtain
estimates of the necessary conditional distribution
defined by the only the two Gaussian parameters;
namely its mean and variance. The simulations are
then drawn randomly from this distribution using
inverse transform method. Finally, the results of the
Gaussian simulation are transformed back into the
original data space. In general, the principle of
Conditional Sequential Simulation, is once the new
value simulated, it is added to the original set of
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conditioning data, and the procedure repeated.
Finally all simulated nodes will have the same initial
spatial structure provided that all node values at data
locations preserved. The principle of Conditional
Sequential Simulations can be described as follows:

Consider f(z4,23,..,2n | Zo) is the cpdf, where z,
denotes the conditioning data at n, locations.

This probability function can be defined as

f(z1,22,..,2n | 20) = (21| 20) - f (22|21 U 2p) ...
f(znlz1, 22, ., 221 VU 2)  (3)

Thus the generation of a realization by Sequential
Simulation takes the following steps:

Algorithm (1):

1. Draw a value z; from the -conditional
probability distribution f; given the set z, as
conditioning data,

2. Draw a value 2z, from the -conditional
probability distribution f, given zyUz; as
conditioning data,

3. Draw the next a value z; from the conditional
probability distribution f; in the same way and
repeat the process.

4. Draw the last value z, from the conditional
probability distribution f,, given the set
(zn|71, 25, .., Zn_1 U z;) as conditioning data.

Remark 1: in case unconditional simulation is
needed one should reduce the set of conditioning
data to the null set; all simulations would be
replaced by drawing from the marginal distribution

fi-

Remark 2: There is no restriction on the spatial
locations of the random variables yielding an
algorithm that can be equally applied to generate
one or more variables on either a regular or irregular
grid.

However, it remains the problem of determining the
Cumulative Probability Distribution Function
(cpdf) of any single random variable given any set
of conditioning data. This problem has been solved
for the Gaussian distribution, where the data first are
transformed to the standard Gaussian values.

If the continuous phenomenon {Z(x),x €D } is
generated by the sum of a number of independent
sources {y,(x),x € D,k =1,..,K} with similar
spatial distributions then the phenomenon can be

modeled by a Multi-Gaussian Random Fields
Model. Multi-Gaussian models are extremely
congenial (good-natured), well understood, and they
have large record of successful applications. A
random function is said to be Gaussian or Multi-
Gaussian if any linear combination of its variables
follows the Gaussian distribution,

Z(x) = ZZ_llkYk(x) = Gaussian (4)

The Gaussian Function is unique for its analytical
simplicity and for being the extreme distribution of
many analytical theorems globally known as
‘Central Limit Theorem’.

Sequential Gaussian Simulation Algorithm

The general procedure for generating a simulation
of a multivariate Gaussian field is provided by the
sequential principle described in Algorithm (1).
Each variable is simulated sequentially according to
its Gaussian Cumulative Distribution Function cdf.
The conditioning data consists of all original data
and all previously simulated values found within a
predefined neighborhood. The SGS algorithm
proceeds as follows (Deutsch and Journel 1992,
Deutcsh 2002):

Algorithm (2):

1. Determine the cpdf of the random variable that
represents the entire study area (the distribution
of z-data).

2. Perform the normal score transform of z-data
into y-data with the standard normal cpdyf, i.e.
the conditioning data should be transformed
into Standard Gaussian.

3. Given the model of the Semivariogram,
compute the covariance table of the transformed
conditioning data.

4. Define a random path through all grid nodes.
The path visits each node only once. At each
grid node retain a specific number of
neighboring data including both original y-data
and previously simulated ones.

5. Ateach grid node to be simulated

a. determine the conditioning data within the
search distance,

b. use kriging, with the normal score variogram
model, to determine the Gaussian parameters
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(mean and variance) of the cpdf of the random
variable at that node,

¢. draw a simulated value from that cpdf.

d. add this node to the original data set,

e. Go back to step (5.a) and repeat the process
until all grid nodes have been visited.

6. Back transform the simulated normal values
into simulated values for the original variable.

z(x) =G *(y(x)),x €D (5)
Remark I:

the first condition for Sequential Gaussian
Simulation SGS 1is that the conditioning data are
multivariate Standard Gaussian with zero-mean and
unit variance. Most earth science data do not present
symmetric Gaussian histogram. In this case a non-
linear transformation should be applied in order to
obtain a standard Normal y-data.

Sequential Indicator Simulation (S1S)

Given a set of spatially distributed data and grid
node system, SIS is a procedure for estimating a new
value at any non-sampled location (grid node) by
Indicator kriging. The SIS procedure is achieved
through sequential estimation of the Cumulative
Probability Distribution Function (cpdyf) at each grid
node. The cpdf provides the probability that at a
particular location the variable of interest does not
exceed a certain threshold. This probability is
conditioned to the initial data values and to all
previously simulated ones. After the cpdf has been
estimated, the simulation of the corresponding value
is achieved by Monte Carlo, where a random
number is drawn from the uniform distribution
U(0,1) then the simulated value is computed from
the inverse of the cpdf by using the inverse
transform method.

The theory behind the SIS technique is as follows:

Suppose {Z(x),x € D} is the random process
defines the conditioning data. Define the indicator
random variable at location x for the threshold z, by
using the binary transformation (Journel 1989),

1if Z(x <zy)
0 otherwise

106,20) = { (©)

where the conditional expected value of the
indicator random variable I(x, zy) is defined as

E{I(x,z)|Z(0)} =PriZ(x) =z} (D)

Consider A threshold z, is defined by z, =
G~1(1 —p) , where p is the mean of the indicator
value, and G(z) is the cumulative Gaussian
distribution function. SIS is achieved by simulating
values of a standard Gaussian variable and applying
the threshold z, to the result. Therefore one can
estimate the value of the conditional probability
defined above by be estimating the corresponding
indicator conditional expectation using Indicator
Kriging from the indicator inverse transform of the
conditioning data. The SIS algorithm estimates cpdf
for all classes at the class limits zg, by using Simple
or Ordinary Kriging.

Sequential Indicator Simulation Algorithm

Before performing the Sequential Indicator
Simulation, the range of each category is established
along with its variability model (or the indicator
covariance function Cj(h; zy), that is needed for
each thresholds z,. Given an initial data set z and K
indicator covariance functions, the SIS algorithm
proceeds as follows (Hernandez & Srivastava 1990,
Deutsch C.V. 20006):

Algorithm (3)

1. Transform the initial conditioning data into
indicator data sets, so that the range of values
taken by the attribute z is classified into K
categories each associated with a certain
threshold z;.. Code each conditioning value into
a vector of K indicator values.

2. Transform the K indicator covariance models
into the same number of kriging covariance
matrices. Establishing the kriging systems in
advance would speed up data search.

3. Define a random path through all grid nodes, so
that each node is visited only once.

4. Now for each grid node to be simulated along
the random path:

a) Determine the conditioning data within the
search distance.

b) Retain the closest data points up to a specified
maximum number per octant.

¢) Again for each threshold z,k = 1,..,K. Set
up the kriging system using the indicator
covariance model and solve the system.
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d) Compute the cpdf estimate for the threshold
as a linear combination of the indicator
conditioning data,

Z(x) =Xz Ik (x), PriZ(x) <z) (8)

e) Draw a random number from the uniform
distribution (0,1) , and simulate a value z by
reading from cpdf, applying the inverse
transform (Monte Carlo Method).

f) Transform the simulated values into a series
of K indicator values according to the same K
thresholds.

g) Add the simulated node obtained in the
previous steps to the set of conditioning
values.

h) Go back to step (4). Repeat until all grid nodes
have been visited.

Remark I: The implementation of the SIS is more
demanding than other simulation methods. In
addition more information is needed to establish the
spatial variability structure that has to be reproduced
by the simulation.

Remark 2: The simulated nodes with SIS algorithm
is not continuous but pre-classified into a number of
categories, or in other words the range of variability
is split into number of classes, each simulated
separately by SIS.

Remark 3: One can use as many classes as needed
in order to obtain the required resolution, if only
information about the variogram model is available.
The classes need not to of equal amplitude, thus one
can focus on that part of the range of variability most
significant to the simulation. We can also use one
model for all categories, which speed the execution
time of the algorithm considerably, because in this
case only one Kriging system has to be solved.

The advantages of Sequential Indicator Simulation
(SIS) algorithm are:

1. Conditioning is done as integral part of the
simulation.

2. No assumption about the probability
distribution (¢pdf) is required.

3. It is not restricted to spatial forms of the
covariance or variogram functions.

4. Qualitative or quantitative information can be
included in the simulation.

Examples of Conditional Sequential
Simulation using synthetic data

Some examples are presented here in order to show
how the output would appear when applying the
conditional SGS or SIS simulation methods on
synthetic 3D data. figure(1) presents SGS method,
and figure(2) presents SIS method, using Spherical
and Gaussian Variograms respectively.

Figure(1) Conditional SGS Simulation, with Spherical
Variogram (left) and Gaussian Variogram (right)

Figure(2) Conditional SIS Simulation, with Spherical
Variogram (left) and Gaussian Variogram (right)
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Implementation the Conditional
Sequential Simulations With 3D data

Both conditional SGS and SIS simulations has been
implemented using real 3D data related to the Historical
Lake Water, Groundwater Levels, and Spring Flows in
Central Florida. Maps and data used in the study belong
the Lake Area in Central Florida, where data collected
mainly by the U.S. Geological Survey over the last 80
years [see Scientific Investigations Report 2014-5032,
O’Reilly A.M., and others (2014) for details]. The Study
area is located within:

[—82°07',—80°90']East , [27°65',29°00'] North.

The data consists of measured data collected by the east-
central Florida transient (ECFT) model [see Scientific
Investigations Report 2012-5161, Septlveda N, et al.
2012], and by the Central Florida Artificial Neural
Network Decision Support System (CFANN DSS). All
data is available for download from the USGS site
(http://dx.doi.org/ 10.3133/sir20145032).

Figure (3) presents the base map of the Lakes Area by
USGS digital data using UTM projection-Zone 17.
Groundwater observation locations and boundary
districts are shown on the map. Water-level were
available for 438 wells in the study area at different
depths from 15m to 485m (1450feet). Figure(4) shows a
3D scatter plot of the data points.

3D Scatter Plot of Data Points
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Figure (3) the base map of the Lakes Area

Figure (4) 3D scatter plot of the data points

Only two Variogram models were used; the Spherical
Figures (5) and the Gaussian Figure (6). Distances here
are represented by Geographic Units (for example
0.15deg=~16.5 km). Variogram Ranges that were fixed in
all subsequent tests are: max=0.25, medium=0.20,
min=0.15. the data Values were standardized to fit the
Gaussian Distribution (1, 0.5), and the sill (maximum

Semivariogram value):
N(h)

max(y,(h)) = max(Tl(h) Z (Zx)— Z(xj))z) ~ 1.0
k=1

Fitting Spherical SemiVariogram (Model) to Data

1.2

Semivariogram ~(h)

0 £ i i L . I
0 0.05 0.10 0.15 0.20 0.25 0.30

Lag Distance (h)

Figure (5) Fitting Spherical Variogram Model

Fitting Gaussian SemiVariogram (Model) to Data

Semivariogram (h)

0 L I L I .
0 0.05 0.10 0.15 0.20 0.25 0.30

Lag Distance (h)

Figure (6) Fitting Gaussian Variogram Model



Uncertainty Assessment and Computational Cost of Conditional Sequential Simulation in 3D Modeling

Implementation of the Conditional Sequential
Gaussian Simulation (SGS):

Simulations have been completed using the following
Parameters:

Variogram Model Types: the Spherical (Left set
of figures below), then Variogram Model Type
: Gaussian (Right set of figures below)
Variogram Ranges : max: 0.25, medium: 0.20,
min: 0.15
Simulation Seed Value = 1804910
Maximum Conditioning Data= 25
Number of all Simulations =36
Number of Data Points = 438
Final Grid Arrangement:

X Y Z

Grid Cells: 60 60 50

Cell Size 0.013 0.013 0.028

Start Coord:  -81.80 29.00 0.05 (-485m)
Finish Coord: -81.20 28.20 1.45 (-15m)
Coord. Units: deg. deg.  x1000feet

The output of this implementation is shown in the figure
(7). Notice the differences between the left set where
Spherical Model was used and the set on the right where
the Gaussian Model was used. The second representation
exhibits smoother patches.

Gond, 533 Sl ion (Ssharicall 3-8

Cand, O3 il dion (Baisir) W33

Langruse 22 atx e

Figure (7) Figures of Sequential Gaussian

Simulation (SGS) with Spherical Variogram (left) and

Gaussian Variogram (right)

Implementation of the Conditional Sequential
Indicator Simulation (SIS):

This type of simulation has been completed using the
following Parameters:

Variogram Model Types: the Spherical (Left set
of figures below ), then Variogram Model Type
: Gaussian (Right set of figures below)
Variogram Ranges : max: 0.25, medium: 0.20,
min: 0.15
Simulation Seed Value = 52470184
Number of Indicators = 3
Marginal Probabilities values: 0.65, 0.25, 0.10
Maximum Conditioning Data = 25
Number of all Simulations = 36
Number of Data Points = 438
Final Grid Arrangement:

X Y 4

Grid Cells: 60 60 50

Cell Size 0.013 0.013 0.028

Start Coord:  -81.80 29.00 0.05 (-485m)
Finish Coord: -81.20 28.20 1.45(-15m)
Coord. Units: deg. deg.  x1000feet

The output of this implementation is shown in the figure
(8). Here the patches for both variograms are the same.

Figure (8) Figures of Sequential Indicator

Simulation (SIS) with Spherical Variogram (left) and

Gaussian Variogram (right)
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Uncertainty Assessment with SIS

The figures below show the results of simulation tests that
performed using Conditional Sequential Indicator
Simulation (SIS) method with the two models (the
Gaussian and the Spherical), changing grid structure
(from 10000 total voxels till 100000 total voxels), and for
each structure changing number of simulations (NS= 10,
20, 36, 48, 64 and 100 simulation). All test used the
marginal probabilities values: 0.65, 0.25, 0.10, assuming
that 25% belong to the groundwater data 10% to lakes
data and 65% stands for unavailable data. After all
simulations for each round are ready, the output of the
Mean value, Standard Deviation and Variance could be
computed and presented as shown in the figures
(11,12,13). Then uncertainty for each of the three
statistical measures was computed and registered. Those
tests show that Mean Uncertainty decreases in the same
way by increasing number of voxels or by increasing total
simulations. After ~64 simulations, one can obtain better
results only by increasing number of voxels as we

MEAN L vs Number of Si i (SIS - Gaussian Model)
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Figure(9) Mean Uncertainty vs. number of simulations and

seven Grid Structure (or Voxels) — SIS Method — Gaussian
model

Variance Uncertainty vs Number of Si i (SIS - Gaussian Model)
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Figure(10) Variance Uncertainty vs. number of simulations

and seven Grid Structure (or Voxels) SIS Method — Gaussian
model

see in the figure(9). On the other hand Standard deviation
uncertainty or Variance Uncertainty (Variance=0‘2; g

Standard deviation) do not show stability after 64
simulations and their values continue decreasing beyond
that, as we see in the figure (10).
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Figure(12) only two SIS tests presented for NS=48
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Uncertainty Assessment with SGS

Similar tests to SIS were performed using Conditional
Sequential Gaussian Simulation (SGS) method with the
two models (the Gaussian and the Spherical), changing
grid structure in same way (from 10000 total voxels till
100000 total voxels. The figures below show the results
of simulation tests, where for each structure changing
number of simulations (NS=12, 24, 36, 48, 64 and 100
simulation). Variogram Ranges: max=0.25,
medium=0.20, min=0.15 were fixes for all. Again, after
all simulations for each round are ready, the output of the
Mean value, Standard Deviation and Variance could be
computed and presented as shown in the figures
(16,17,18) . Then uncertainty for each of the three
statistical measures was computed and registered. Those
tests show that Mean Uncertainty decreases in the same
way by increasing number of voxels or by increasing total
simulations. For SGS method, the mean value of
uncertainty decreases slowly by increasing number of

simulations NS, or by increasing number of voxels as we
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see in the figure (14). Standard deviation uncertainty or
Variance Uncertainty (Variance=c2; o Standard
deviation) measures do not show any stability after 100

simulations and their values continue decreasing beyond
that, [figure (15)].
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Figure(16) only two SGS tests presented for NS=24
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Computational Cost Assessment

Simulation tests have been performed for both SIS
Method and SGS Method and using the Spherical and
Gaussian Variogram models changing grid structure (17
in total starting from 10,000 voxels till 1000,000 total
voxels). Again for each structure changing number of
simulations (NS) (for SIS six in total, NS= 6, 20, 36, 48,
64 and 100 , and for SGS six also, NS=12, 24, 36, 48, 64
and 100). This means that for each SIS or SGS Method
about 100 test have been executed and for each test the
time of execution was measured precisely (with accuracy
+1.0 millisecond). All tests were performed in the way
with the same parameters explained in the previous
sections. The time that has been measured belongs only
to the CPU time for simulations and writing results to
disk. There is an extra time is needed for presenting
outputs or other arrangements was not included because
this is not depend on number of voxels, the NS number
or the method used. The characteristics of the CPU
processor that has been used is Intel i7 2.20 GB runs by
Windows 10 (64bit) operating system. Table (1) and
table (2) show the results of the execution time (in
seconds) for both SIS and SGS Methods respectively.
Those results demonstrated graphically in figure (19) for
SIS and in figure (20) for SGS simulations.

Number 6 20 36 48 64 100

of Voxels | Simulations | Simulations | Simulations | Simulations | Simulations | Simulations
10000 0.957 3.164 4.246 6.778 8.526 10.940
20000 1.696 6.127 7.986 13.464 17.174 21.426
30000 2.385 9.074 11.826 19.790 26.250 32.050
40000 3.169 12.475 15.865 27.173 35.437 43.990|
50000 3.710 15.747 19.468 33.791 44.410 53.912
60000 4.366 19.022 23.627 41.115 54.783 63.871
80000 5.682 25.166 31.281 54.794 72.781 85.304
100000 7.533 31.726 39.262 69.284 91.552 108.385
125000 9.292 39.484 50.377 86.596 113.949 136.375]
150000 10.726 47.528 60.839 105.191 136.602 160.893|
180000 13.242 57.857 71.710 125.786 164.080 192.063]
216000 16.183 69.792 88.416 151.536 199.836 227.631
252000 18.808 80.863 102.950 178.318 234.080 269.031
343000 24,951 111.598 140.986 242.516 328.084 369.040
512000 36.540 167.781 210.476 368.346 483.043 535.505
729000 54.890 241.600 323.816 556.850 711.978 788.527
1000000 73.225 346.064 495.254 805.784 1008.368 1115.895]

Table (1) SIS Method execution time in seconds

Number 12 24 36 48 64 100
of Voxels | Simulations | Simulations | Simulations | Simulations | Simulations | Simulations
10000 2.014 2.937 5.475 7.540 8.624 10.515
20000 4.055 5.573 10.397 14.667 17.704 22.417
30000 6.228 8.417 15.641 21.706 26.579 33.904
40000 8.527 11.158 21.329 28.786 36.097 46.374
50000 10.798 13.685 26.910 36.047 46.885 57.499
60000 13.115 16.529 32.274 43.063 55.947 69.324
80000 17.401 22.414 43.196 56.995 74.960 92.302
100000 21.626 27.855 54.146 71.489 93.181 115.511
125000 27.100 34.441 68.238 90.002 117.541 144.314]
150000 32.818 41.662 82.520 107.098 141.000 175.398|
180000 39.692 50.500 99.736 128.775 173.270 216.380)
216000 48.043 61.433 119.876 153.065 205.204 260.834]
252000 56.096 71.415 140.153 178.815 239.598 310.892
343000 77.444 96.976 190.977 246.474 332.064 424.607|
512000 115.075 146.141 293.699 365.988 494.793 648.297|
729000 166.619 209.843 425.011 528.138 693.255 934.007
1000000 230.320 292.715 591.122 731.846 958.337 1278.054]

Table (2) SGS Method execution time in seconds
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The x and y axis of the charts are Log-Log which show
more details for smaller grid structures (voxels number).
As we see from the figures that the relationship is linear
in both cases (SIS and SGS). Those figures also useful for
making predictions by interpolation or extrapolation
(unless the PC has same or similar parameters).

LoglLog Plot: Time vs Total Voxels for SIS 3D Si
T
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Figure (19) the linear relationship between simulation time
(seconds) and Total Number of Voxels (SIS Method)

LogLog Plot: Time vs Total Voxels for SGS 3D Simulatios
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Figure (20) the linear relationship between simulation time
(seconds) and Total Number of Voxels ( SGS Method)

The last results do not show clearly which method is
faster SIS or SGS because there are many disturbing
values when comparing the two tables above. Also we
still do not know whether the relationship is also linear or
in other words, whether the total number of voxels
processed in one second using SIS Method or using SGS
Method will be the same, if all other parameters are the
same !. One more question; do the Spherical Variogram
model behave in the same way as with the Gaussian in
term of computational cost?
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For this purpose, another synthetic measure was created
which calculates the speed of simulation by the following
formula

NS-TV

Speed = T

Where Speed refers to the total simulated voxel that is
generated in one second,

NS refers to number of simulations, TV refers to Total
Voxels and T refers to the time in seconds.

The values in the following tables show (“Speed”
Computations) the total number of voxels processed in a
second using SIS Method fixed in table (3) and using
SGS Method in table (4). The tables values have been
illustrated in the figures (21) and (22) respectively.

SIS 6/Sph |20/ Gau| 36 /Sph |48 /Gau |64/ Gau|100 /Sph

10000| 62696 63211 84786 70817 75065 91408
20000| 70755 65285 90158 71301 74531 93345
30000| 75472 66123 91324 72764 73143 93604
40000 75734 64128 90766 70658 72241 90930
50000| 80863 63504 92459 71025 72056 92744
60000| 82455 63085 91421 70047 70095 93939
80000| 84477 63578 92069 70081 70348 93782
100000| 79650 63040 91692 69280 69906 92264
125000| 80715 63317 89326 69287 70207 91659
150000| 83908 63121 88759 68447 70277 93230
180000| 81559 62222 90364 68688 70210 93719
216000 80084 61898 87948 68419 69177 94890
252000 80391 62328 88120 67834 68900 93670
343000| 82482 61471 87583 67888 66910 92944
512000| 84072 61032 87573 66720 67837 95611
729000| 79687 60348 81046 62839 65530 92451
1000000 81939 57793 72690 59569 63469 89614

Average 79232 62675 88123 68569 69994 92930

Table (3) Total Number of Voxels processed in a second
using SIS Method (Sph: Spherical model, Gau: Gaussian)

SGS 12 / Gau | 24 / Sph [ 36 / Gau | 48 / Sph | 64 / Gau | 100 /Sph

10000 59583 81716 65753 75660 74212 95102
20000 59186 86130 69251 77453 72300 89218
30000 57803 85541 69049 78341 72237 88485
40000 56292 86037 67514 78699 70920 86255
50000 55566 87687 66890 78580 68252 86958
60000 54899 87120 66927 78879 68636 86550
80000 55169 85661 66673 79374 68303 86672
100000 55489 86160 66487 79143 68684 86572
125000 55351 87105 65946 78665 68061 86617
150000 54848 86410 65439 79228 68085 85520
180000 54419 85545 64972 79094 66486 83187
216000 53952 84385 64867 79736 67367 82811
252000 53908 84688 64729 79645 67313 81057
343000 53148 84887 64657 78798 66108 80781
512000 53391 84083 62758 79150 66226 78976
729000 52503 83377 61749 78255 67300 78051
1000000 52101 81991 60901 77588 66782 78244

Average 55153 85207 65562 78605 68663 84768

Table (4) Total Number of Voxels processed in a second
using SGS Method (Sph: Spherical model, Gau: Gaussian)

The answers to all above suggested questions can be
deduced from the figures (21) and (22).

e In general, SIS Method is much faster than SGS
Method 10-15%, as we see with the Spherical
variogram and NS=100, SIS speed is about 93000
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Figure (21) the relationship between simulation “Speed”
(Total Voxel/second) and number of voxels for one
simulation Using SIS Method.
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Figure (22) the relationship between simulation “Speed”
(Total Voxels/second) and number of voxels for one
Simulation using SGS Method.

voxels/sec. while it is near 85000 voxels/sec. for
SGS. When using Gaussian variogram and NS=36,
SIS speed is about 88000 voxels/sec. while SGS
speed is about 66000 voxels/sec.

For both methods (SIS or SGS) the speed is not
stable all the time, as we see some distributions in the
beginning for grid total voxels number less than
350,000. After that limit SGS speed becomes stable.
On the other hand SIS speed has also some stability,
but its performance becomes a little slower for larger
grid total voxels.

One can also notice, in general, from tables (3) and
(4) or from corresponding figure that when using the
Spherical Variogram the speed is nearly 20%-25%
faster than its level using the Gaussian variogram, no
matter whether the simulation is performed by SIS or
SGS method.
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Conclusions

Statistical tests have been proved that the Mean
Uncertainty decreases (with both SIS or SGS Conditional
Simulations) by either increasing number of total voxels
(3D grid) or by increasing number of simulations (NS) or
both. For SIS method this uncertainty becomes stable
after the limit NS=64, while for SGS method the same
feature becomes stable after NS=100 limit.

The tests also proved that by either increasing number of
total voxels (3D grid) or by increasing number of
simulations (NS) Variance Uncertainty continue
decreasing beyond the limit NS=100, but for SIS method
this feature is a little slower and for SGS method the
decreasing is much faster.

For both SGS and SIS Conditional Simulation methods,
there is a clear linear relationship between Computational
Cost (simulation time) and number of Voxels of the 3D
grid no matter which CPU processor is used. This
conclusion helps to predict precisely the computational
cost for large 3d grid structure and/or very large number
of simulations (say NS>100). Note that each of SIS or
SGS has its own chart and its own speed, thus we should
not unify the two charts.

The multiple tests (more than 200) proved that SIS
method speed is 10-15% faster than SGS Method. The
tests also proved that speed of simulations is faster 20%-
25% using Spherical Variogram than when using the
Gaussian one.

Special Matlab programs have been used in all
implementation, and presentations of this research,
with support from mGstat and SGeMS libraries for
performing simulations only. This software is free
online [see mGstat: Hansen T.M (2011)] and
[SGeMS; Rémy N., Wu J., Boucher A. (2004)].
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